Ядерные реакторы в космосе

История развития космической ядерной энергетики необычна и нестандартна на фоне других направлений развития ядерных технологий. С самого первого дня космической эры ядерная энергия рассматривалась, как безальтернативный вариант для долговременных и энергоемких космических операций: лунных баз, межпланетных полетов, гигантских геостационарных платформ для связи, как единственный источник энергии в дальнем космосе. В силу абсолютной убежденности в том, что все это будет реализовано еще в 20 веке, в США и СССР стартовали обширные программы разработки ядерных энергоустановок (ЯЭУ) для обеспечения энергией космических аппаратов.

Ядерные Реакторы

Однако, несмотря на десятилетия усилий, практический результат разработок весьма ограничен — один полет опытной установки в США, несколько опытных в СССР и, единственная в своем роде, серия 30+ запусков космических радаров УС-А, с электропитанием от ЯЭУ “БЭС-6 Бук”.

Почему результат оказался несоизмерим с замахом, какие технические решения применялись и планировались в космических ЯЭУ — об этом подробнее сегодня.

Космические условия работы требуют множества специфических решений от разработчиков ядерных реакторов. Основные отличия от земного базирования заключаются в следующих эффектах:

  1. Для космического применения наиболее важным является вес. Весовая культура определяет множество других решений. Например защита от излучения реактора делается секторно, в сторону полезной нагрузки.
    1. Невесомость приводит к отсутствию конвективного теплообмена в жидких и газообразных теплоносителях. Из-за этого резко усложняется теплосъем и борьба с локальными перегревами АЗ
  2. Сброс паразитного тепла ЯЭУ возможен только через излучение радиаторами-холодильниками (РХ). Приемлемые массы РХ получаются, если их рабочая температура составляет хотя бы 500К (230 С), а лучше 800К.
  3. Жесткие энергомассовые характеристики вкупе с предыдущим пунктом заставляют использовать довольно экзотические теплоносители — гелий, СО2 или легкие металлы — литий, калий, натрий.
  4. От космических ядерных реакторов требуется очень долговременная работа без перегрузок ядерного топлива, ну и разумеется максимальная надежность все это время.

Все в месте, такие требования сильно осложнали жизнь разработчиков ЯЭУ, удорожали и усложняли их применение. Получались системы, весьма далекие от своих наземных собратьев, а требования по массе и надежности приводили к необходимости очень длительной проработки этой экзотики.

Первыми из инженерных пеленок вышли крайне примитивные варианты — использовать тепло радиоактивного распада (не цепной реакции!), например изотопа стронция Sr90 (один из основных продуктов “горения” U235 в реакторе) или Pu238 и простой термоэлектрический преобразователь (представляющий собой фактически германиевый или кремниевый диод). КПД такой “установки” был всего ~1%, но она была проста, не имела движущихся частей и позволяла снабжать электричеством космический аппарат долгие годы. Первым спутником с РИТЭГ (радиоизотопный термоэлектрический генератор) стал запущенный в июне 1961 года  американский Transit 4A (навигационный спутник для флота), несший на борту РИТЭГ SNAP-3 мощностью всего 2,5 ватта и весом 2,5 килограмма.

1_yapfiles.ru

Первый в истории ядерный источник энергии в космосе.

РИТЭГи образовали отдельную ветку источников питания, и активно применялись (и применяются) на космических аппаратах и на земле (например в автономных метеокомплексах). Их преимуществом является долгая работа (так, РИТЭГи АМС Вояджер-1,2  потеряли за почти 40 лет работы всего 40% начальной мощности, причем часть этой потери приходится на деградацию термоэлектрического генератора, а не на распад плутония) и простота конструкции, а недостатками — невысокая удельная  и абсолютная мощность, не больше пары электрических киловатт, гораздо бОльшее количество активности на килограмм массы при выводе и дороговизна — плутоний 238 (именно 238, а не 239 — он является мощным альфа-эммитером с удобным периодом полураспада) стоит порядка нескольких миллионов долларов за килограмм (и дает 560 ватт с каждого килограмма).

MMRTG_schematic_-_english_labels
Более современные РИТЭГ, применявшийся на Кассини и Новых Горизонтах.
2 таких РИТЭГа в составе одного из трех реальных энергомодулей Cassini перед монтажом на аппарат.

RTG_radiation_measurement

Однако вернемся к космическим реакторам. Параллельно с нечетными (РИТЭГ) SNAP, развивалась ветка и четных — ядерных реакторов. Программа началась в 1958 году, прошла несколько прототипов, а единственным летным реактором стал SNAP-10A, запущенный 3 апреля 1965 года. Активная зона этого реактора была набрана из 37 экзотических твэлов со смесью металлического U235 93% обогащения и гидрида циркония (замедлитель!) и охлаждения сплавом NaK.

23015_original

Запасной экземпляр реактора SNAP-10A. Слева электромагнитный насос (с белыми радиаторами), правее сам реактор. Видны поворотные бериллиевые отражатели (эдакие лопасти), которые регулируют мощность реактора.

Реактор работал на тепловых нейтронах и имел мощность в 40 киловатт. Эта мощность подогревала жидкометаллический теплоноситель с 475С до 540С, тепло сбрасывалось через полупроводниковый преобразователь, который вырабатывал до 550 ватт электрической энергии. Управление этим реактором (как и всеми остальными, кстати) осуществлялось путем открытия “жалюзей” в отражателе нейтронов — таким образом регулировалась утечка нейтронов из активной зоны, а значит и скорость цепной реакции. Вес ЯЭУ составлял 450 килограмм, вес топлива  ~40 килограмм. Реактор проработал в космосе 43 дня, и был потерян из-за электрических проблем в спутнике-носителе.

22717_original
Сборка спутника SNAPshot, на котором проводились космические испытания реактора SNAP-10A

SNAP-10A стал первым и последним космическим реактором США, хотя проектов и наземных опытных установок различные группы в США наплодили очень немало, и продолжают разрабатывать их сейчас.

Термоэлектрический генератор SNAP-10A. Такой принцип надолго станет основным для ядерных космических источников энергии.

23280_original

Однако основной практический опыт принадлежит СССР, который начал разработку космических ЯЭУ чуть позже США, а первой наземной экспериментальной установкой стал БР “Ромашка”, запущенный в августе 1964 года. Его создателем стал Курчатовский институт. Так же, как и SNAP это была довольно экзотическая конструкция — быстрый реактор с твэлами из карбида урана, нагретыми до 1600 С на поверхности и до 1800 внутри (что определило использование карбида) и с отдачей энергии радиативно бериллиевому отражателю. Активная зона реактора была вакуумирована (и потом проводились эксперименты с работой в атмосфере гелия), принудительной прокачки теплоносителя не производилось. Как и у американского конкурента тепловая мощность “Ромашки” была 40 киловатт, а электрическая -~450, топливом служил оружейный уран, а управление осуществлялось через регулирование утечки нейтронов.

O4eTOjZ4m97U8ZVkVpcus-WvB0Mu4R9sox7IOqHSEnCq1ubRC-hNBzJ-9VIlSJUHqzNGarFQjh5OFBImhuHWFkq0fzV470ghBL7r55kYtqAVY-mV26hvKMw3qnRGbsCk
Реактор «Ромашка»

Однако СССР пошел дальше. Необходимость отслеживать авианосцы США привела к созданию орбитальных радиолокаторов системы “Легенда”. Для лучшей энергетики размещать их надо было на низкой орбите, и в начале 60х ЯЭУ для обеспечения электроэнергией радиолокатора казалось хорошей альтернативой СБ — в 1961 3 киловатта СБ и аккумуляторов были не дешевле, да и аэродинамическое торможение “лопухами” ограничивало время жизни спутника парой месяцев. Так была создана самая массовая космическая ЯЭУ БЭС-5 или “Бук”

O4eTOjZ4m97U8ZVkVpcusyYLQ4ZIFadXEuEY_snfIpJQ6WRwKSJFrmy2sZotFs1H4kL2y-el9uk8QrcwTif_Ym-6UUuZm9wf8PihI4dcs0E
Макет спутника радиолокационной разведки УС-А. Реактор — по некоторым данным темный элемент слева либо металлический горизонтальный килиндр в центре.

Идеология создания “Бука” была направленная на как можно большее упрощение ЯЭУ, продолжая линию “Ромашки”. Быстрый реактор с твэлами из сплава металлического урана и циркония общей массой 35 кг с бериллиевым отражателем. Тепловая мощность ~100 киловатт отводилась из реактора натрий-калиевой эвтектикой (как у SNAP-10A) при выходной температуре в 720 градусов и преобразовывалась полупроводниковым ТЭГ в 2,8 киловатта электроэнергии, питавшей радиолокатор. Реактор управлялся подвижными элементами отражателя, а кроме того имел канал для ввода поглощающего стержня для глушения реактора.

Еще один макет БЭС-5 БУК, на котором мало что можно разглядеть.

O4eTOjZ4m97U8ZVkVpcusxQUAnEouklN7Akma09mOJ_3t2BE6-E8OPVrNCR8MI_6uKkqtG3SmRJ53o-gK4VAW-ezCBChNYRhouhjnOhJLUcew9Rr9IqTPbLyCsTB1YAb

В период 1963-1969 гг. была проведена отработка жидкометаллического контура, прошли испытания безреакторных БЭС-5 с имитатором термоэлектрического генератора, а затем с действующим ТЭГ. Первая эксплуатационная ЯЭУ “Бук” с серийным № 31 была установлена на ИСЗ “Космос-367”, запущенном 3 октября 1970 г. Она проработала всего 110 минут, после чего реактор экстренно увели на орбиту “захоронения” по причине “заброса” температуры первого контура выше предельно допустимой, вызванной расплавлением АЗ реактора.

Доработки, проведенные на «Красной Звезде», позволили продолжить летные испытания системы, которые заняли, в общей сложности, почти пять лет. В 1971-1972 гг. на орбиту были выведены три КА с Бук: “Космос-402”, ”Космос-469” и ”Космос-516” . Их полеты прошли без существенных замечаний, что позволяло в кратчайшие сроки ввести систему радиолокационной разведки в ограниченную эксплуатацию.

Последний запуск отечественного КА с бортовой ЯЭУ состоялся 14 марта 1988 года. На спутнике “Космос-1932” (18957 / 1988 019А) была установлена доработанная установка с 6-месячным сроком функционирования и электрической мощностью в конце ресурса 2400 Вт. И хотя полет прошел нормально, от эксплуатации аппаратов с ЯЭУ было решено отказаться.

Основной причиной этого стало давление со стороны США и международных организаций, требовавших от Советского Союза “прекратить загрязнение космоса”. Но немаловажным фактором стали и сравнительно низкие технические характеристики ЯЭУ.

Западная реконструкция УС-А

O4eTOjZ4m97U8ZVkVpcus6QdlncI4nOuRG6tkU07ccvvV0wnEu_DQj15Hn6_Mr-PVi_p_WDZvhHOHxQX5IgRL0FQM3sCIsPmwvHVlISGMCf8Ma6chV5XcFk1GL86h6yX

За все годы запусков в нашей стране КА с ЯЭУ БЭС-5 на орбиту было отправлено 32 установки. Одна из них не долетела до космоса, две возвратились назад, а остальные до сего дня продолжают пребывать на высоте 700-800 км от Земли. Штатно отработали свое 20 аппаратов, а среди аварийных случилась и довольно известное падение остатков реактора КА Космос-954 на территории Канады в январе 1978 года, что привело к международному скандалу. Как и в случае подводных лодок пр.705 сложность новой техники, вкупе с невозможностью что-то поправить на орбите дала привели к неоднозначному результату.

Параллельно с с доводкой БЭС-5 “Бук” в СССР начали развиваться и другие направления ЯЭУ. Прежде всего это было направление повышения КПД путем замены вездесущих термоэлектрических генераторов на термоэмиссионные. Эту разработку вели обнинский ФЭИ (“Топаз-1”) и Курчатовский институт (“Топаз-2”).

adecb402aa004f8b9888396e08d67d79
Макет ЯЭУ «Топаз-1» Хорошо видны барабаны в отражатели, поворотом которых регулируется мощность

Принцип термоэмисионных генераторов заключается в утилизации тепловой энергии через эмиссию электронов с нагретого катода на анод — ровно как это происходит в электронных лампах, только катод предлагается нагревать ядерным реактором. Термоэмиссия имеет преимущество в виде более высокой рабочей температуры системы (т.е. меньшего веса радиаторов-холодильников), а из недостатков — более сложные твэлы и более напряженный реактор. Конструктивно реактор выполнялся следующим образом — капсула из оксида 90% U235 в молибденовой оболочке работала катодом, и гирлянда таких капсул помещалась в трубу между центрирующих вставок из окиси бериллия. Капсулы электрически объединялись последовательно, промежуток между ними и трубой откачивался до вакуума и наполнялся парами цезия, после чего такой твэл помещался в реактор.

Температура катода достигала 1650 С, а анода — 1200С, охлаждение происходило все тем же натрий-калиевым сплавом. Удельная электрическая мощность была доведена до 2 Вт/см^2 поверхности катода. Разработка и отработка потребовала в рамках Топаз-1 провести реакторные испытания более чем 50 вариантов электрогенерирующих твэлов. Первые полномасштабные наземные энергетические испытания ядерного прототипа ЯЭУ «Топаз-1» были проведены на стенде ГНЦ «ФЭИ» в 1970 г. Изделие было выведено на электрическую мощность 10 кВт. Испытания продолжались 150 часов, после чего были приостановлены из-за утечки теплоносителя ЖМК. Всего были испытаны 4 ядерных прототипов ЯЭУ «Топаз-1».Реактор набирался из 79 электрогенерирующих сборок в каждой из которых было по 5 капсул, и содержал всего 12 килограмм диоксида высокообогащенного урана. Как вершина программы были запущены 2 спутника с ЯЭУ Топаз-1 — Космос-1818 в феврале и Космос-1867 в июле 1988 года. Они штатно отработали 142 и 343 суток, штатно же показав снижение эффективности и выработки э/э с 6 киловатт до 3.

O4eTOjZ4m97U8ZVkVpcus2VI611El2KRDfmZNpjFPl9iDoUF0snL-Ag76PphzV_GxJH5CT8VZZc9cUgcpdpV6A

Однако к середине 70х, когда Топазы были готовы к космическим испытаниям ситуация начала уже меняться. Накопленный опыт ядерных аварий, в т.ч. с КА с ЯЭУ “Бук” приводят к угасанию энтузиазма и все большему количеству пунктов НИОКР, посвященных безопасности и надежности. Появляются требования ООН по ядерно-безопасным орбитам, которые запрещают запуск ядерных реакторов ниже орбиты в 800 км над поверхностью Земли. Параллельно происходит стремительный прогресс солнечных батарей, мощности которых увеличиваются с десятков ватт в начале 60х до единиц киловатт к 1990. Их простота и изученность перекрывает путь ЯЭУ мощностью в единицы и даже десятки киловатт.

Разработка новых ЯЭУ с конца 80х перемещается в диапазон бОльших мощностей, обычно от 100 кВт до 10 МВт, а главное — в почти полностью бумажную стадию. Да, в рядовом режиме летают снабженные РИТЭГ межпланетные станции (например марсианский ровер Куриосити или спутник Сатурна Кассини), однако вслед за исчезновением с горизонта полетов людей на Марс, лунных баз и сверхтяжелых ГСО на два десятилетия замирает и практическая разработка новых реакторов.

Один из вариантов большой Юпитерианской АМС JIMO с реактором.

O4eTOjZ4m97U8ZVkVpcus68jpF7KZd8_XwP6At7CsGaIfvsF5zLYTQUJnHpQaU3IwJJUaClsiq2jPJl83Md92YO7pRbPk-nVhUCn4GZpIZNrZ44wBE-ldpU4G427oy_ujYKHwVB_4oeV4NsFZe9tbg
Я позволю себе промотать множество концептов и экспериментов, произошедших с 1988 года и перейду сразу к ослепительной звезде на небосклоне космических ЯЭУ — аппарату ТЭМ (транспортно энергетический модуль) с ядерным реактором РУГК. Высокотемпературный быстрый реактор с газовым охлаждением тепловой мощностью в 3,8 мегаватта, газотурбинный преобразователь, капельные холодильники — этот проект по масштабу как минимум вдесятеро превосходил все предыдущие подходы “к турнику”.

O4eTOjZ4m97U8ZVkVpcus39JEybJuGojhwJw5dLjJKrrBYdFlTMlG59VJzSBxOQ9xMhssCdi9PdPZkfkrkXW2wbHhNr6eogfIltzKRNh4H9k2EFhAJR_MeUmRb1lY4Fu
Реактор ТЭМ и мегаваттный газотурбинный преобразователь.

Вершиной 20 летних исследовательских и конструкторских усилий по созданию космических энергоустановок на базе ядерных реакторов в СССР стал полетевшая в 1988 году двойка спутников «Плазма-А». Эти установки базировались на отлаженной на земле технологии термоэмиссионного преобразования энергии (более 80 испытательных сборок провели в реакторах от 100 до 16000 часов). Вложенные усилия, масштаб работ и красота идеи оказались настолько мощными, что последующие 20 лет в статьях профильных организаций, проектировавших и планировавших КА с ЯЭУ вы не найдете ничего, кроме развития идей реакторов с термоэмиссионными преобразователями.
hq720
20 лет разговоров про светлое ядерно-космическое будущее оборвались в октябре 2009 года, когда финансирование получили не многочисленные проекты развития «Плазма-А», а «Транспортно-энергетический модуль» с турбомашинным преобразованием.
И во главе проекта встали совсем не те люди, которые занимались этой тематикой раньше. Одну из ключевых ролей в таком развороте кроме усилий лоббистов сыграла одна техническая идея, связанная со сбросом тепла в космосе.
05bab6ba4727deecd6e544eb0fb6bf06
Американская АМС JIMO, тоже планировавшаяся с ядерным реактором на борту

Хорошо известно, что вес — это главный враг космических ЯЭУ, а холодильники для сброса паразитного тепла — самый тяжелый элемент подобных аппаратов. В варианте с термоэмиссионными преобразователями этот вопрос решается довольно элегантно — да, их КПД невелик по сравнению с турбинным циклом, но температура холодильников излучателей может быть очень высока (порядка 1000К, а сам реактор разогрет до 1650К), а как мы помним, вес холодильников зависит от температуры в степени 1/T^4. В итоге эта степенная зависимость переигрывает вчетверо больший объем тепла, который надо сбросить с термоэмиссионной ЯЭУ. Только если у вас нет революционной идеи капельного ХИ.

Идея заключается в том, что бы вместо того, что бы гонять жидкость по трубкам внутри излучающих панелей, она полетит прямо сквозь космос — от форсунок-формирователей струй до каплеуловителя. При этом, теоретически, вес ХИ можно сократить в разы, а потери на испарение в вакуум решаются подбором специальной кремнеорганической жидкости. В таком раскладе у термоэмиссионых ЯЭУ начинает играть их «родимое пятно» — невысокая плотность мощности на электрогенерирующих твэлах, ну и кпд в 5-8%.

Именно такой концепт ТЭМ — с турбомашинным преобразованием тепловой энергии и капельными холодильниками был предложен ФГУП «Центр Келдыша» в 2009 году. Новаторство идеи легло на благодатную почву пика «развития инноваций в стране» президентом Медведевым, а помноженное на силу лоббистов Росатома и главы «ИЦ Келдыша» академика Коротеева позволило смести жалкие «архаичные» проекты РКК Энергии, КБ Арсенал, ОАО «Красная звезда» с доски и получить заветное финансирование.
3aaff0db980f81e91c5559f0fb2505f3
Первый эскизный вариант ТЭМ с 4 капельными холодильниками (бежево-коричневые полотнища). Снизу рендер в сложенном положении. (с) РКК Энергия

Для проведения НИОКР в 2010 году была начата программа стоимостью 17 миллиардов рублей, из которых 7.245 млрд руб выделялось на реактор, 3.955 на систему преобразования энергии, а около 5,8 млрд — на оставшийся космический аппарат. Ядерный реактор поручили делать институту НИКИЭТ (создателю свинцового быстровика БРЕСТ), систему преобразования энергии — ИЦ им. Келдыша, а весь космический аппарат — РКК «Энергия».

Облик первой редакции ТЭМ поражал любого инженера, знающего контекст. Сверхвысокотемпературный (1600К!) быстрый реактор, охлаждаемый газом, топливо из карбонитрида урана (перспективное, но малоизученное), турбокомпрессорные установки, работающие на 60000 оборотах в минуту c температурой на турбине 1500К непрерывно 10 лет, теплообменники, на те же 1500К. Раздвигающаяся конструкция аппарата длинной 54 метра и шириной 20, в исходном состоянии укладывающаяся под обтекателем РН. Рекордная мегаваттная космическая электросистема с напряжением 4,5 киловольта, питающая 16 ионных ЭРД мощностью по 60 киловатт (в 10 раз мощнее летавших на тот момент и в 1,5 раза мощнее лабораторных рекордсменов). Наконец сам космический аппарат, который должен был выдерживать в 10 раз большую дозу облучения, чем сегодняшний типичный уровень в 100 килорад — облучения как от реактора, так и от радиационных поясов, сквозь которые пришлось бы буксировать полезные нагрузки.
b0d7a56eb04da6aebb52b40cc6a23618
Проект начал развиваться, регулярно блистая перспективами и инновациями в интервью, ТВ и конференциях. Наиболее резво взялся за работу Росатом — быстро отказавшись от карбонитридного топлива в пользу знакомого оксидного был спроектирован ядерный реактор, смесь стандартного и нового. В цилиндрическом корпусе из нержавеющей стали диаметром 50 см и длинной примерно метр расположены несколько сотен цилиндрических твэлов, содержащих оксид высокообогащенного урана в оболочках из монокристаллического молибдена диаметром 4-5 мм. Общая расчетная масса топлива 80-150 кг, в зависимости от достижимого выгорания. Управление осуществляет вдвижением и выдвижением 19 поглощающих стержней системы управления из карбида бора в молибденовой оболочке. Быстрый реактор имеет тепловую мощность 3,8 мегаватта и охлаждается газовой смесью из 78% гелия и 22% ксенона при рабочем давлении в 40 атм. Температура газовой смеси на входе 1200, а на выходе 1500К (1227 С).

82577c07b410bfa481d82b376b3593e8
Модель активной зоны ТЭМ для гидравлических испытаний.

Ядерную установку разрабатывает несколько предприятий Росатома, в т.ч. ФЭИ, много десятилетий занимавшийся разработкой космических ЯЭУ, НПО «Луч», владеющий технологиями высокотемпературных твэлов, а внутриреакторное поведение элементов ЯЭУ ТЭМ в петле с горячей рабочей газовой смесью вел НИИАР, обладающий самым большим парком исследовательских реакторов в стране. Не смотря на уход с битьем посуды из НИКИЭТ в 2012 году главного конструктора реактора В.П. Сметанникова разработка реактора продолжается практически в графике — испытана петля с новым для ядерщиков теплоносителем и штатным твэлом, создан частичный теплогидравлический стенд, а в НИТИ в Сосновом Бору строится наземный образец ЯЭУ. Запуск этой установки планируется на 2015 год, и такой запуск будет безусловной победой ядерной инженерной науки.
8fe3eaae16be73cb5680eef5013b878d
Ранняя версия реактора РУГК для ЯЭУ ТЭМ. (с) Росатом

Другая кооперация из ИЦ им. Келдыша, КБХМ, КБХА и ВНИИЭМ занималась турбомашинным преобразователем. На ТЭМ планируется установить 4 одинаковых модуля мощностью по 250 киловатт. В систему входят так же AC/DC и DC/DC преобразователи, буферные аккумуляторы, дополнительные системы охлаждения оборудования. Вместе с ядерным реактором масса энергоблока должна была составить 6800 кг.
a904bf6221822ce6fee229f5ab7bc2d4
Схема и параметры ЯЭДУ ТЭМ. (с) Центр Келдыша
1041468cb3c0af78a6a288e9518e6ac6
Кадр из ролика Центра им. Келдыша с разрезом 250 киловаттного турбогенератора ТЭМ. (с) А. Ильин
Тепловая энергия превращается в электрическую в газотурбинном цикле (Брайтона), где энергия газа, извлеченная на турбине идет как на электрический генератор, так и на вращение компрессора, поддерживающего циркуляцию газа. Через теплообменник остаточное тепло сбрасывается во второй контур, где рассеивается в космос с помощью холодильников-излучателей.

1b4cfb1c9fd2dd7d863a863e795c9464
Модель 250 кВт турбогенератора ТЭМ 1:2 (с) Аник
Сложности по разработке элементов системы турбомашинного преобразования сравнимы со сложностью реактора. По отдельности все требования выполнимы: существуют газовые турбины и на большие, чем 1500К температуры, а турбонасосы ракетных двигателей, перекачивающие водород, имеют частоты вращения и окружные скорости даже выше, чем 60000 и 500 м/с. Однако собрать все сразу в сочетании с 10 летним необслуживаемым ресурсом — прыжок был явно выше головы. Например, проблемы с высокотемпературными газовыми теплообменниками в свое время зарубили очень перспективное направление регенеративных газотурбинных двигателей, а газодинамические подшипники для невесомости довольно сложно испытывать на ресурс в условиях гравитации.
77dc4de5816b5087f60b4ea41028692b
Пластины опытного теплообменника ТЭМ. (с) А. Ильин

В 2013 году ИЦ им. Келдыша рапортовал об успехах по созданию прототипов всех важнейших элементов турбомашинного преобразователя — двух типов теплообменников, генератора и газотурбинной установки. Однако по последним данным НИР идут довольно туго и ресурс оборудования далек от нужного. Уже осенью 2013 постулируется факт, что капельные холодильники далековаты от инженерного воплощения, и разработать их пока не получится. Обещанные рекордные ионные ЭРД постепенно мельчают — проблемы с большеразмерными перфорированными электродами с высоким ресурсом, которые не умеет решать никто в мире остаются нерешенными.
d7bb5e48f5b522cab2d5700b16bd6a90
Прототип ионного двигателя ТЭМ от Центра Келдыша. Уже помельчавших в размерах по сравнению с изначальной задумкой © А. Ильин
c36f54464891f6950dce5afaaf409016Вариант ТЭМ с панельными холодильниками

Кроме того, взаимодействие Центра Келдыша (входящего в Роскосмос), возглавляемого академиком Коротеевым с остальными крупными космическими предприятиями зачастую носит натянутый характер с взаимным поливанием грязью, что тоже не способствует прогрессу. ТЭМ, красиво расписанный на этапе эскизного проекта начинает рассыпаться на этапе подтверждения характеристик агрегатов.
9c3b35548ac9be77d25ca9acc02b9577
Модель сложенного ТЭМ, лето 2013 года. Обратите внимание на ионные двигатели — их стало 24 против 15 на ранней модели. Холодильники все еще капельные

Наконец, работа предприятий во главе с РКК “Энергия” была направлена на создание собственно космического аппарата, вооруженного ядерным энергоисточником. “Энергия” вынуждена была взяться за фронт работы, который перекрывал путь ее собственной разработке буксира с термоэмиссионной ЯЭУ “Геркулес”, да и фронт проблем был шире чем у двух других основных “головняков”. Необходимо было создать тяжелый КА, имеющий на борту все традиционные элементы — системы ориентации и орбитального маневрирования на гидразиновых ЖРД, мощные солнечные батареи и телеметрию, системы причаливания к полезной нагрузке и заправки, ксеноновые баки и наконец заставить это все работать 10 лет в радиационных условиях. Еще более специфическими элементами должны были стать:

раскладывающиеся фермы для выноса ЯЭУ от тела КА, с удлинением в космосе в 2,5 раза, с 20 до 54 метров;
раздвигающиеся трубопроводы теплоносителя их герметизация — все это должно безотказно работать в условиях вакуума и радиации;
раскладывающиеся панели ХИ площадью в сотни квадратных метров;
высоковольные линии запитки ЭРД;
раскладывающиеся крылья, несущие ЭРД и холодильники-излучатели.
01ad779e6236ab80da6971126038de88
Эскизный проект ТЭМ в представлении РКК-Энергия

Все это великолепие требовалось упихать в максимальные 22 тонны, которые способна выводить РН «Ангара-5». Фактически, сразу после выдачи эскиза будущего ТЭМ РКК «Энергия» начинает усиленно отгребать от проекта ТЭМ, скинув часть задач на ГКНПЦ им. Хруничева, а часть — на КБ Арсенал — создателей КА «УС-А» и «Плазма-А». Представители РКК начинает рассказывать в интервью, что буксиры на базе СБ не так и плохи. Арсенал, в свою очередь сдувает пыль со своих проектов буксиров с 300-500 кВт термоэмиссионной ЯЭУ.
82577c07b410bfa481d82b376b3593e8 (1)
Разрез реактора ТЭМ в версии технического проекта. (с) НИКИЭТ

В конце 2014 года сложная ситуация с проектом выливается в его секвестирование в рамках Федеральной космической программы на «2016-2025». В ней остается финансирование на НИР, причем в основном по линии, где есть какие-то результаты — собственно ядерный реактор и турбомашинные преобразователи. Космический запуск ТЭМ убирается из планов, и мы видим, как будущее, в котором у человечества появляются новые инструменты для освоения космоса тает, как на фотографиях в «Назад в будущее». В очередной раз, как в случае с «Геркулесом» или JIMO человечество откатывается назад, не в силах преодолеть технический барьер на пути к созданию мощных космических реакторов.
Resim4(9)
А жаль!

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>